All
BoostCamp AI Tech
AWS
Udemy
Python
Computer Vision
NLP
Natural Language Processing
AWS Certified Developer Associate
Graph
AUSG
TDD
Convolution Neural Network
CNN
RNN
DevOps
IaC
Terraform
AlexNet
Transformer
Knowledge Distillation
R-CNN
Fast R-CNN
Faster R-CNN
YOLO
Semantic Segmentation
VGGNet
Data Augmentation
Attention
GAN
ResNet
Deep Learning
Neural Network
Multi Layer Perceptron
Probability Distribution
Numpy
Filter Decomposition
Low-rank Approximation
Eigenvalue Decompostion
Singualr Value Decomposition
SVD
Principal Component Analysis(PCA)
Tensor Decomposition
Quantization
Teacher-student Network
Hinton Loss
Zero-mean Assumption
Pruning
Lottery Ticket Hypothesis
Multi-modal Learning
Joint Embedding
Cross-modal Translation
Show and Tell
Show Attend Tell
Cross-modal Reasoning
Short-time Fourier transform
STFT
Spectogram
Sound Tagging
Speech2Face
Image-to-speech Synthesis
Sound Source Localization
Instance Segmentation
Mask R-CNN
YOLACT
YolactEdge
Panoptic Segmentation
UPSNet
VPSNet
Landmark Localization
Coordianate Regression
Heatmap Classification
Hourglass Network
DensePose
RetinaFace
CornerNet
CenterNet
Conditional Generative Model
Super Resolution
Pix2Pix
CycleGAN
Cycle-consistency Loss
Perceptual Loss
Feature Reconstruction Loss
Style Reconstruction Loss
Gram Matrix
Deepfake
Face de-identification
Video translation
Object Detection
Selective Search
Two-stage Detector
Single-stage Detector
IoU
Anchor Box
RPN
NMS
SSD
Focal Loss
Class Imbalance problem
RetinaNet
DETR
CNN Visualization
Filter Visualization
Embedding Feature Analysis
Dimensionality Reduction
Activation Investigation
Class Visualization
Model Behavior explanation
Model Decision Explanation
Saliency Test
Occlusion Map
Backpropagation-based Saliency
CAM
Grad-CAM
Fully Convolutional Networks
FCN
Upsampling
Transposed Convolution
Checkboard artifact
Hypercolumn
U-Net
DeepLab
Conditional Random Fields
CRFs
Atrous convolution
Depthwise separable convolution
Image Classification
K-NN
LeNet
Transfer Learning
Semi-supervised Learning
Self-training
Graph Neural Network
GNN
GCN
GraphSAGE
GAT
Graph Embedding
Over-smoothing
Node Embedding
Node Representation Learning
Similarity
DeepWalk
Node2Vec
Transductive Node Embedding
Recommender System
Content-based Recommender System
내용기반 추천시스템
Collaborative Filtering Recommender System
협업필터링기반 추천시스템
Netflix Challenge
Latent Factor Model
잠재인수 모형
Community Detection
군집 탐색
Configuration Model
배치 모형
Modularity
군집성
Girvan-Newman Algorithm
Louvain Algorithm
betweenness centrality
매개중심성
Cascade Model
Linear Threshold Model
선형임계치모형
Independent Cascade Model
독립적전파모형
PageRank
페이지랭크
Graph Patterns
Self-Supervised Learning
Pretraining Model
GPT
BERT
Zero Shot Setting
Few Shot
ALBERT
ELECTRA
Self-Attention
Positive Encoding
Multi-Headed Attention
Block Based Model
Encoder
Decoder
Masked Self-Attention
Seq2Seq
Beam
BLEU
Character Language Modeling
LSTM
GRU
Bag-of-Words
Word Embedding
Word2Vec
GloVe
Generative Models
생성모델
Conditional Independence
조건부독립
Auto-regressive Model
AR Model
AR 모델
자기회귀모델
NADE
Pixel RNN
Variational Auto-Encoder
VAE
Variational Inference
ELBO
Adversarial Auto-Encoder
AAE
Generative Adversarial Network
Attention Mechanism
Multi Headed Attention
Kernel
Filter
Convolutionalization
Fully Convolutional Network
Detection
SPPNet
Stride
Padding
패딩
Demension Reduction
GoogLeNet
DenseNet
Optimization
Generalization
Over-fitting
Cross-validation
Momentum
Adagrad
Adam
Regularization
DQN
Encoder/Decoder
Adam Optimizer
Bert
GPT-3
Self Supervised Learning
Bayes' theorem
베이즈정리
빈도주의
조건부 확률
Conditional Probability
인과관계
Causality
중첩요인
Confounding Factor
인공신경망
Linear Neural network
MLP
Matplotlib
Seaborn
Statistics
모수
Parameter
확률 분포
중심극한정리
Central Limit Theorem
표본분포
Sample Distribution
표집분포
Sampling Distribution
가능도
우도
Likelihood
최대가능도측정법
최대우도측정법
Maximum Likelihood Estimation
MLE
쿨백-라이블러 발산
KL Divergence
Probability theory
확률론
확률분포
Joint Probability Distribution
결합확률분포
Marginal Probability Distribution
주변확률분포
Conditional Probability Distribution
조건부확률분포
Monte Carlo Method
몬테카를로 방법
MCMC
Markov chain Monte Carlo
Softmax
Activation Function
Forward Propagation
Backpropagation
Chain-rule
Pandas
numpy
Grdient Descent
Linear Algebra
Vector
Matrix
log
regex
XML
csv
JSON
Docker
S3
VPC
Solution Archiecture
Route 53
DNS
RDS
Aurora
ElastiCache
EBS
EFS
Instance Store
ASG
Scaling
ELB
SSL/TLS
SNI
IAM
EC2
ENI
Security Groups
Linux
Ubuntu

모델 경량화 4 - 행렬 분해(Filter Decomposition)

행렬 분해 by 홍원의 마스터님, BoostCamp AI Tech 8주차

모델 경량화 2 - Quantization(양자화)

양자화 by 홍원의 마스터님, BoostCamp AI Tech 8주차

모델 경량화 3 - 지식 증류(Knowledge Distillation)

지식 증류 by 홍원의 마스터님, BoostCamp AI Tech 8주차

모델 경량화 1 - Pruning(가지치기)

가지치기 by 홍원의 마스터님, BoostCamp AI Tech 8주차

Computer Vision 08 - Multi-modal Learning

Multi-modal Learning by 오태현 교수님, BoostCamp AI Tech 7주차

Computer Vision 06 - Instance & Panoptic segmentation

Instance segmentation and Panoptic segmentation by 오태현 교수님, BoostCamp AI Tech 7주차

Computer Vision 07 - 조건부 생성 모델(Conditional generative model)

Conditional generative model by 오태현 교수님, BoostCamp AI Tech 7주차

Computer Vision 04 - 객체 검출(Object detection)

Object Detection by 오태현 교수님, BoostCamp AI Tech 7주차

Computer Vision 05 - CNN 시각화(Visualization)

Semantic segmentation by 오태현 교수님, BoostCamp AI Tech 7주차

Computer Vision 03 - Semantic segmentation

Semantic segmentation by 오태현 교수님, BoostCamp AI Tech 7주차

Computer Vision 01 - 이미지 분류(Image Classification)

Image Classification by 오태현 교수님, BoostCamp AI Tech 7주차

Computer Vision 02 - 효율적인 데이터 학습을 위한 Annotation

Annotation data efficient learning by 오태현 교수님, BoostCamp AI Tech 7주차

Graph 07 - 그래프 신경망(Graph Neural Network)

그래프 신경망 by 신기정 교수님, BoostCamp AI Tech 5주차

Graph 05 - 노드 임베딩

그래프를 추천시스템에 어떻게 활용할까 by 신기정 교수님, BoostCamp AI Tech 5주차